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Abstract
We investigated the absolute acoustic band gaps for two-dimensional periodic
arrays of silica cylinders in viscous liquid. Acoustic band structures, which
have complex eigenfrequencies for these systems, are calculated with the plane
wave expansion method. They show that when the viscous penetration depth is
comparable to the structural length scale, the structures possess large absolute
acoustic band gaps compared with those without viscosity. We also found that
the magnitude of the viscosity plays an important role in these band gaps.

1. Introduction

In the past decade, significant effort has been devoted to the study of photonic crystals because
of their novel physical properties and many potential applications [1, 2]. Recently, a great deal
of attention has extended to the phononic crystals, the counterpart of photonic crystals, for
which elastic (EL) waves and/or acoustic (AC) waves are concerned [3–25]. As in the photonic
crystals, the basis of all applications of phononic crystals, such as acoustic/elastic wave filters,
depends on the existence of wide frequency band gaps in which no sound and vibration are
allowed. In addition, because of elastic waves’ vector characters and the possible coupling of
their longitudinal and transverse modes, rich physics is expected to exist in EL and AC waves
propagating in phononic crystals.

Since Mártinez-Sala et al found that sound can be attenuated by the two-dimensional
(2D) array of rigid cylinders periodically arranged in air [9], the AC or EL waves propagating
in solid–liquid, liquid–liquid and solid–solid systems have been studied extensively [10–25].
The formation of an acoustic band gap in binary composite strongly depends on the lattice
structure [13, 14] and the material properties of each component, such as mass density, wave
velocities or elastic moduli [3–8]. Because of the suppression of transverse sound in the liquid,
the acoustic gaps are comparatively difficult to produce in solid–liquid systems. However, it
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Figure 1. The acoustic band structure of silica cylinders arranged in a square lattice in an ice
matrix. The lattice constant a = 1.0 µm and the filling fraction of silica cylinders is 0.4. The
frequency gap range is marked by the shaded area.

was found recently that the viscosity in the liquid can help to open acoustic band gaps in
three-dimensional (3D) systems [10]. The shear viscosity in a liquid brings a new length scale
associated with the penetration of shear stress into the viscous liquid. If the viscous penetration
depth δ (δ = (2η/ρω)1/2, where η is the shear viscosity, ρ is the density of the fluid and ω is
the angular frequency) is comparable to the structural length scale of the composite, viscous
effects should not be ignored for the acoustical properties.

In this paper, we investigate the effect of the viscosity on the 2D band structures of the
periodic arrays of solid cylinders in viscous liquid. We not only found the similar effect as in
3D systems, namely that there exists gap formation in the solid–liquid system [10], but also
found that when the viscous penetration depth is comparable to the structural length scale (the
composite periodicity), the 2D solid–viscous fluid materials possess larger absolute acoustic
band gaps than those without viscosity. In particular, the dependence of the gap size on the
magnitude of the viscous damping parameter is also investigated in this paper.

For the 2D structure consisting of the infinite cylinders parallel to the z axis and for the
wave propagating in the x , y plane normal to the z axis, the displacement can be described
by two independent wave equations. One describes a pure transverse mode polarized in the
z direction displacement, which may be expressed as

−ω2uz = 1

ρ(r)
∇(µ(r)∇uz),

and the other describes the mixture of longitudinal and transverse modes polarized in the x , y
plane, which may be expressed as

∂2ui

∂ t2
= 1

ρ(r)

{
∂

∂xi

(
λ(r)

∂ul

∂xl

)
+

∂

∂xl

[
µ(r)

(
∂ui

∂xl
+

∂ul

∂xi

)]}
,

where ρ(r) is the density and λ(r), µ(r) are the Lamé constants of the medium. We call the
former mode a single mode and the latter two modes coupled to each other a mixed mode.
For the solid–pure liquid system, there is only a longitudinal mode in the fluid. For the solid–
viscosity liquid system, there exists shear viscosity η in a fluid which means complex elastic
constantsµ = −ωηi and λ = ρC2+(2/3)ωηi [10] for the liquid. Correspondingly, the complex
sound velocities in the liquid are c2

l = (ρC2 − (4/3)ωηi)/ρ, c2
t = −ωηi/ρ. In order to avoid a
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Figure 2. The acoustic band structure of silica cylinders arranged in a square lattice in a liquid
with viscous damping parameter θ = 1.2 × 109. The lattice constant a = 1.0 µm and the filling
fraction of silica cylinders is 0.4. The complex eigenfrequencies are plotted for the mixed mode in
the left-hand panel and for the single mode in the right-hand panel. The real frequency ω′ is given
in the upper part and the imaginary frequency ω′′ representing the damping in the lower part.

complicated diagonalization problem originating from the explicit frequency dependence, we
introduce a viscous damping parameter θ = ωη and assume it is frequency independent, as
dealt with in the 3D case [10] (this assumption will not introduce much discrepancy in the short
frequency region for the band gap we are interested in). Then, the complex elastic constants
can be written as µ = −θ i and λ = ρC2 + (2/3)θ i. The calculations of band structure are
performed with the popular plane-wave expansion (PWE) method. 441 plane waves are used
in the expansion and the numerical results reach a good convergence.

2. Results and discussions

As a characteristic example to show the importance of the role of transverse mode in the
system, we first calculated the band structure for a solid–solid system consisting of silica
cylinders embedded in an ice matrix. The material parameters used in the calculations are
ρ = 2.2 kg m−3, Cl = 5.97 km s−1, Ct = 3.76 km s−1 for silica, and ρ = 0.94 kg m−3,
Cl = 3.83 km s−1, Ct = 1.84 km s−1 for ice, where ρ, Cl and Ct are, respectively, the density,
and the longitudinal and transverse sound velocity. Figure 1 shows the band structure of a
square lattice of silica cylinders with a volume fraction f = 0.4 in ice matrix. The diameter of
the cylinders is 0.714 µm and the lattice constant a = 1.0 µm. In the figure, the solid curves
describe the disperse relation of the mixed mode and the dashed curves stand for the single
mode. Near 2.1 GHz, it exhibits a small band gap between the fifth and the sixth bands with
width 0.176.

We now focus on the AC wave propagating in a viscous solid–liquid system including silica
cylinders in a viscous liquid. As we expected, when the viscous length δ is comparable to the
structural length scale of the composite, the viscosity has an important effect on the acoustical
properties. In the 2D band structure calculations, the parameters of the liquid are chosen as
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Figure 3. (a) The gap formations of silica cylinders arranged in a square lattice in a liquid with
viscous damping parameter θ = 1.2 × 109. (b) The AC wave band structure of silica cylinders in
pure liquid. The lattice constant a = 1.0 µm and the filling fraction of silica cylinders is 0.4.

ρ = 1.0 kg m−3, Cl = 1.48 km s−1, and complex elastic constants µ and λ with viscous
damping parameter θ = 1.2 × 109 (this corresponds to a shear viscosity η = 1.2/(2π) Pa s
for the liquid at frequency 1 GHz, and a penetration depth of order of µm) are used for the
liquid. The complex eigenvalues ω = ω′ +ω′′i are obtained by solving the dynamical equation
with complex elastic constants and real wavevectors. The imaginary part ω′′ gives the damping
of the mode with time. The numerical result of the dispersion relation with complex frequency
is shown in figure 2. From it, we can also see the mixed mode (left-hand panel) and the single
mode (right-hand panel) just as in 2D solid–solid systems. Because of the viscous effects,
a transverse mode can exist in the viscous liquid. One transverse mode coupled with the
longitudinal mode polarizes in the x , y plane and the other transverse mode polarizes in the z
direction. It is also found that the mixed mode and single mode are all highly damped, which
is demonstrated by the imaginary part of the frequency shown in the bottom of the picture.

At the same time, near 0.78 and 1.01 GHz one observes the gap formations. Figure 3(a)
shows the first band gap between the forth and fifth bands and the second gap between the fifth
and sixth bands. The width of the first gap is 0.032 and that of the second is 0.223. Comparing
the result with that of the silica cylinders in the liquid ignoring the viscosity (see figure 3(b); this
is calculated with the multiple-scattering method [25], applicable for calculating the disperse
relation of the solid–liquid system), there is only a smaller gap with width 0.087 near the
0.85 GHz. This implies that introducing the viscosity in the liquid can produce a large band
gap. It should be pointed out that the presence of absorption in the solid–viscous fluid system
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Figure 4. Gap width/mid-gap frequency versus the viscous damping parameter θ . The case for
the first gap is shown in the upper part and that for the second gap is shown in the lower part.

tends to blur the distinction between pass bands and stop bands, but the band gap for an
absorptive system is still capable of distinguishing from a combined measurement for both the
transmission and reflection coefficients in an experiment.

It has been seen that the viscous damping in the liquid results in the larger gap formation
in solid–liquid systems. Furthermore, we will investigate the effect of the various viscous
damping parameters on the gap properties. Figure 4 shows the gap width/mid-gap frequency
versus the viscous damping parameter θ . The upper part presents the behaviour of the first gap
shown in figure 3 and the lower part presents that for the second gap. From the figure, we can
see that the first gap width increases gradually when the viscous damping parameter θ runs
from 1.0 × 109 to 8.0 × 109. For the second gap, there is a peak at θ = 0.7 × 109 (the shear
viscosity η = 0.7/(2π)) and the corresponding maximum of the gap width/mid-gap is 0.323.
When the viscous damping is larger than 0.7 × 109, the gap width decreases with the viscous
damping increasing.

3. Conclusions

In conclusion, by using the PWE method, we studied the absolute acoustic band gaps in
2D systems consisting of silica cylinders in a viscous liquid. It was shown that if the viscous
penetration depth is comparable to the structural length scale, viscous effects play an important
role in the acoustical properties. We calculated the acoustic band structure with complex
eigenfrequency for the viscous parameter θ = 1.2 × 109, which corresponds to a viscosity
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η = 1.2/(2π) at frequency 1 GHz in the liquid. Numerical results showed that the 2D Si–
viscous liquid composite exhibits large absolute AC wave band gaps compared with the Si–pure
liquid system. These gaps are also found to depend on the choice of the viscosity in the liquid.
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